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In  this paper the viscous, slightly stratified flow towards a sink is investigated. 
The fluid is assumed incompressible, linearly stratified in density, and the flow 
steady. The theoretical portion of this paper includes both the two-dimensional 
and the axisymmetric cases, whereas the experimental portion includes only the 
two-dimensional case. The solutions obtained indicate that there exists a with- 
drawal layer symmetrically situated about the horizontal plane of the sink. The 
flow occurs in this layer while outside this layer there is essentially no motion. 
This withdrawal layer grows in thickness with the distance x (or r )  from the sink 
at a rate proportional to d (or d) .  The velocity distributions u(y )  (or u(x)) are 
similar from one station x (or r )  to another. 

1. Theoretical investigations 
1.1. Introduction 

Weak motions of a density-stratified fluid in a gravitational field often exhibit 
large departures from the motion of homogeneous fluids. Physically, in a stably 
stratified fluid, work must be done to displace any fluid particle vertically since 
there is a force due to the gravity field always tending to oppose the displacement. 
Vertical motions are therefore inhibited in favour of horizontal motion. Stratified 
flows are common in the oceans and in the atmosphere. 

The problem of linearly stratified flow towards a sink was first investigated by 
Yih (1958) for the two-dimensional inviscid case. The fluid is assumed to occupy 
a semi-infinite rectangular strip with the sink located a t  the lower corner of the 
end of the strip as shown in figure 1. He assumed that the velocity distribution 

p U 2  = const., at infinity is such that 

where p is the density and U the horizontal velocity, both functions of the vertical 
co-ordinate y. The solution is found expressed in a Fourier series for values of the 
internal Froude number 3’ = U/d(gc)* greater than 1/n- where d is the depth, 
e the density gradient and g the gravitational acceleration. For internal Froude 
numbers less than l/n, the solution exhibits waves and thus the assumption on 
the velocity distribution at  infinity is no longer justified. Kao (1963) extended 
Yih’s solution to include cases where the internal Froude number is less than l/n- 
by introducing a uniform sink distribution on the vertical wall as shown in 
figure 2. The flow field would then possess a dividing streamline above which the 
fluid leaves by way of the distributed sink and below which the fluid comes out of 
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the bottom sink. By requiring that the pressure on this dividing streamline be 
equivalent to the hydrostatic pressure due to the fluid above it, the flow above the 
dividing streamline may be replaced by stagnant fluid with a vortex sheet at  the 
dividing streamline. The conclusion is that the internal Froude number based on 
the height of the dividing streamline at  infinity is equal to a constant 0.345. 

4 
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FIGURE 1. Yih’s solution for P = 0.35. Lines shown are streamlines 

Line sink 

(from Yih 1958). 
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FIGURE 2. Kao’s method of solution. 

Debler (1959) and Gariel (1949) both performed experiments on linearly 
stratified flow towards a sink. Because of the inherent difficulty in making steady 
experiments with continuously stratified flows, the results are not very conclu- 
sive. Only the gross quantities such as discharge, thickness of the withdrawal 
layer, and density gradient were measured. 

It is interesting to investigate the effect of viscosity in stratified flow towards 
a sink especially since the motion usually has to be weak for the stratification to 
be important. Little work has been done in the field of viscous, continuously 
stratified flow. Long (1962) investigated the problem of the flow over and behind 
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a flat plate in a viscous, linearly stratified flow by linearizing the equations. A 
similar approach is used here to solve the problem of the viscous stratified flow 
towards a sink. A perturbation-similarity procedure is developed from which 
the relative importance of the neglected terms may be clearly seen. 

Experiments were performed in a laboratory tank and the results compared 
with the analytical solution. These experiments will be discussed in $ 2  of this 
paper. 

The work reported herein is a condensed version of a thesis (1964) submitted 
by the author in partial fulfilment of the degree of Doctor of Philosophy. 

1.2. Formulation of the equations 

Consider an incompressible, slightly stratified fluid occupying all space. A hydro- 
dynamic sink is located at the origin and withdraws the fluid at  a rate q. The 
two-dimensional case will be treated in detail here. The axisymmetric case will 
be summarized later on in this paper, while the detailed developments will be 
omitted. 

The continuity equation for pure fluid flow is 

v. ( p u )  + appt = 0, (1.1) 

where u is the velocity vector, p the density, t the time, and V. the divergence 
operator. If the fluid is stratified and the stratification is due to temperature 
variations alone, then equation (1.1) is the continuity equation for the flow. If, 
however, there is a foreign substance in the fluid such as dissolved salts in water, 
then there is the additional transfer of mass due to molecular diffusion of the salt 
through the water and the full continuity equation should read 

9 +v. (pu) = v.  (DVC), (1.2) at 

where D is the molecular diffusion coefficient, and c the concentration of the salt. 
It may be readily deduced, to the order of approximation Ap/p, (where Ap is the 
total change in density in the relevant flow field, and po is the density at the level 
of the sink), that the continuity equation (1.1) may be written as 

For steady flow, it becomes simply 
v.u = 0. 

The equation of state for the flow of an ordinary incompressible fluid is, of 
course, 

For a stratified fluid, the continuity equation for the substance or agent respon- 
sible for the stratification and a relation between the concentration of this agent 
and the density must be considered. Such a relation would, in general, be 

p = const. 

ac ac 
dt - at 
- -+u .vc  = V. (DVc) ,  
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where, if the stratification is thermal, D would be the thermal diffusivity and 
c the temperature. We next assume that the relation between c and p is linear. 
Thus p - P o  = k(c-c , ) .  

Combination of equations ( 1.5) and ( 1.6) gives 

9 at = V .  (DVp). (1.7) 

The general momentum equation may be written as 

du 
at p -+Vp = V.r+pG, (1.8) 

where G is the external force field, r the stress tensor, and p the pressure. 

FIGURE 3. Viscous stratified flow towards a line sink: the withdrawal layer. 

For a Newtonian fluid with first and second viscosity coefficients p and h in 
a gravitational field, equation (1.8) becomes 

du 
p + V p  = pV2u + (Vp) [Vu + (Vu) *I + p[ - g j ]  + V . (hlV . u) . ( 1.9) 

For steady, slightly stratified flow, by virtue of equation (1.4), it  becomes 

d u  
p dt + V p  = pV2u + (Vp) [Vu + (Vu)*] +p[ - gj]. (1.10) 

1.3. Boundary-layer assumption and the reduced equations 

Equations (1.4), (1.7), and (1.10) will now be applied to the problem of two- 
dimensional, steady, slightly but linearly stratified flow towards a sink at the 
origin. Rectangular co-ordinates x and y will be adopted as shown in figure 3. 
It will be assumed also that the fluid occupies all the right half plane but that, 
even though the flow field is infinite in extent, the bulk of the motion occurs 
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within a withdrawal layer (like a boundary layer) whose thickness 6(x) is much 
smaller than the distance x from the sink. The flow field and the velocity distribu- 
tions might be as illustrated in figure 3. 

Equations (1.4), (1.7), and (1.10) hence reduce to 

au av -+- = 0, 
ax ay 

p u-+v-  +-=-  / A - ,  [ :: z :y( :) 

(1 .11 )  

(1.12) 

(1.13) 

(1.14) 

where u and v are the components of velocity in the x- and y-directions respec- 
tively. Terms of the order 6(x)/x and higher have been neglected and D is assumed 
to be constant. We introduce the stream function $ such that 

u = a$/ay, v = -a$lax. (1.15) 

We also define the density and viscosity perturbations as 

P@, Y) = Po + SO(Y) +s(x, Y), 

/A@, Y) = P O  + Oo(Y) + Y), 

(1.16) 

(1.17) 

where po is the density of the undisturbed fluid at  the sink level, ,uo the viscosity 
of the undisturbed fluid at the sink level, po+so(y) the density distribution if 
there were no motion, and /A, + Oo(y) the viscosity distribution if there were no 
motion. Substituting equations (1.15), (1.16), and (1.17) into equations (1.12), 
(1.13), and (1.14), eliminating the pressure terms and remembering that 

and 

from the assumption of small stratifications, we obtain the two equations 

and 

(1.15) 

(1.19) 

(1.20) 

(1.21) 

Before normalizing the equations, it  is convenient to specify the parent density 
distribution. Assume that the hydrostatic density distribution is linear: 

SO(Y) = - f v o Y ,  (1.22) 

where 
1 as, 

Po dY 
e = - - - -  - const., (1.23) 
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We define the following non-dimensional variables 

I Q, = $ia, 

5 = ( c 3 / a 3 x ,  

7 = EY, 

= (S/rooPEJ4)S, 

and also define the two parameters 

= EglDV, P = qe21@, D. 

Then equations (1.20) and (1.2 1) become 

The boundary conditions expressed in the non-dimensional variables are 

(1.24) 

(1.25) 

(1.26) 

(1.27) 

(1.28) 

a+O as [-+co. (1.29) 

1.4. Solution to the two-dimensional problem 

To solve equations (1.25) and (1.26) subject to the conditions (1.27), (1.28) and 
(1.29), we assume a pertarbation-similarity solution of the form 

(1.30) 

(1.31) 

where 1: = 7/53 = aoy/x+, (1.32) 

and substitute them into the equations (1.25) and (1.26). Assuming /?/@ << 1, 
the various terms may be grouped according to their order. The net results are: 

(i) To zeroth order 

with the boundary conditions 

(1.33) 

(1.34) 

(1.35) 

(1.36) 



Viscous stratified flow towards a sink 

(ii) To first order 
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with the homogeneous boundary conditions 
m 

$ d 5  = 0, 

(1.37) 

(1.38) 

(1.39) 

(1.40) 

Similarly, one may obtain the equations for h,, f , ,  etc. although these will not 
be given here. In  fact only the zeroth-order equations will be solved in detail. 
Solutions for hl,fi,  etc., are solely a case of numerical analysis. The purpose of 
the perturbation analysis is primarily to show the effect of the neglected quanti- 
ties. Note that the perturbation parameter is /?I@ which is inversely propor- 
tional to the % power of the distance from the sink. Thus the greater the distance 
from the sink, the better the approximation. 

The equations (1.33) and (1.34) subject to the conditions (1.35) and (1.36) were 
solved numerically on an IBM 7090 computer. The solutions are shown graphic- 
ally in figure 4. From figure 4, the velocity distribution may easily be visualized. 
The flow field indeed looks like the one shown in figure 3 with the withdrawal 
layer growing in thickness as 24. If one defines 6 as the thickness of the forward 

S(X) = 7*14x~/ao. (1.41) 
Aow, then from figure 4 

The significance of the boundary-layer assumption may now be readily seen. 

6 7.14 
From equation (1.41), 

- 
x aox3' 

(1.42) 

For large x, S/x may be made as smalI as one pleases provided ao, which is pro- 
portional to the sixth root of the density gradient, is not zero. The validity of 
the boundary-layer assumption thus depends on both x and a,. 

The other parameters assumed small for the validity of the solution are: 
q/Daox3, which is the perturbation parameter; q/va,xQ, which occurs disguised as 
Dlv in the first-order equations; and €6, which is the total relative change in 
density in the relevant flow field. 

1.5. The axisymmetric case 

For the axisymmetric case, let Q be the discharge, r be the horizontal radial 
co-ordinate and x be the vertical co-ordinate; we would have, instead of equations 
(1.20) and ( l . Z l ) ,  the following equations: 

(1.43) 

(1.44) 

36 Fluid Mech. 24 
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where @ is the axisymmetric stream function and the other symbols have the 
same meaning as before. With the normalizations 

(1.45) 
$ = @/(QPn), 
t = (e3 /a3 r ,  

7 = €2,  

CT = (2ng/,0~v&~~)s,  

and defining p = &ve4/2ng, these equations may be written as 

(1.46) 

(1.47) 

The boundary conditions are the same as before. Substitution of the perturba- 
tion-similarity series 

+(t, ll)  = fo(5) + (1.48) 

(1.49) 

into equations (1.46) and (1.47), assuming pi@ < 1 and collecting terms of the 
same order, for the zeroth order we obtain 

(1.50) 

(1.51) 

The boundary conditions are, of course, still given by equations (1.35) and 
(1.36). Higher-order equations may similarly be found although the details will 
not be given here. The solution to equations (1.50) and (1.51) is presented in 
figure 5.  

It may be readily seen by comparison that the two-dimensional and the 
axisymmetric cases are very similar to each other. If one replaces x by r, y by z, 
q by Q/%r, in the two-dimensional solution, one would have a good approxima- 
tion to the axisymmetric solution. The thickness of the withdrawal layer is a little 
thinner being 

S(r) = 5 * 8 r ) / ~ ~ ,  

compared with 6(x) = 7.14d/aO 
for the two-dimensional case. 

1.6. Discussion of the validity of the theoretical solution 

The discussion in this section is only on the two-dimensional solution since this 
is the case which will be compared with the experiments later. Essentially the 
same discussion may be applied to the axisymmetric case because of the simi- 
larity discussed in the last paragraph of the previous section. 

The analytical solution for the two-dimensional case (figure 4) is valid pro- 
vided the four quantities €8, Six, q/Da,x*, and q/va,x$ are all much smaller than 
unity. 

3G-2 
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FIGURE 5. ( a )  The non-dimensional stream function and its derivatives for the axi- 
symmetric case. ( b )  The non-dimensional density function and its first derivative for the 
axisymmetric case. 
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The fist quantity €6 is the total relative change in density from the top to the 
bottom of the relevant flow field (in other words, the withdrawal layer). Since 
S grows with x,  the quantity €6 will be small when s is very small and 6 not very 
large. This means that the solution should not be applied when x is too large 
since S would then be too large. From the solution, S/x cc l/a,x*. Thus, SS cc exija, 
must be 4 1. 

The second quantity Sjx is, by virtue of the solution, the same order as l/a,x8. 
For a, + 0, this may be made very small when x is large. 

The third and fourth quantities q/Da,x*, q/va,x* are very small when q is very 
small. The solution is taken to be the limiting solution when q + 0. Thus, as long 
as D, v, a,, and x are not zero, these two parameters are truly negligible for 
small enough q. 

Thus, to summarize the limitations imposed by the various assumptions on 
the validity of the theoretical solution, one may apply the zeroth-order solution 
if s is very small, J: is neither small nor exceedingly large, and q very small. In  
a given problem in the stratified flow towards a line sink, one would be given 
s, q, D, v, and hence a,. One can then calculate the quantities l/a,x*, q/Da,x*, 
qjua,xQ, and Ex:x)/ao for various x. For those values of x where all these quantities 
are small, the zeroth-order solution may be applied provided no further compli- 
cations such as turbulence, non-linear density distribution, and complicated 
geometry come into the problem. The validity of the theoretical solution is thus 
confined to a range of the variable x,  that range within which the four quantities 
above are very small. In any given case, the extent of this region may be very 
large or there may not be any value of x at which the solution is valid. It all 
depends on the magnitude of the parameters q, D, v, and e. 

The analytical solution for the axisymmetric case (figure 5) is valid provided 
the quantities sS, Sjr ,  &/Dcx,x*, &jva,x* are all much smaller than unity. 

2. Experimental investigations 
To supplement the analytical solution, a series of experiments was performed 

in which fluid was withdrawn from a slit in the side of a tank filled with a linearly 
stratified liquid. This corresponds to the two-dimensional case discussed in Q 1 
of this paper. 

In  these experiments, density gradients were achieved in two different ways: 
(i) by means of a temperature gradient (designated as T-series runs), (ii) by means 
of dissolved salt (N-series runs). 

2.1. Apparatus and procedure 

The experimental reservoir was a long tank constructed of clear Lucite, #in. 
thick. A schematic drawing of the reservoir is shown in figure 6. It is 45 ern deep, 
250 ern long and 26 ern wide with a milk-white Lucite partition in the middle 
along the length of the tank extending from one end to a point 13 cm from the 
opposite end. This partition essentially doubles the length of the reservoir. On 
the discharge end was a slit 0.15 ern wide located 16 ern from the bottom and 
extending the width of the tank as divided. 
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For the N-series runs, the experimental reservoir was first filled with layers of 
water containing appropriate quantities of salt (NaC1) to give a linear gradient 
of density from top to bottom. This water was then allowed to stand overnight 
or about 15 h so that the density distribution would become smoothly linear by 
molecular diffusion. The next morning the density profile was measured in- 
directly by measuring the electrical conductivity of the solution a t  various levels 
in the reservoir. A typical density profile is shown in figure 7. The discharge 
valve was then opened and the flow rate regulated. After waiting about 5-10 min 

13 an 

Elevation 

Detail of sink 

FIGURE 6. Schematic drawing of the experimental reservoir. 

for the system to reach a quasi-steady state, dye particles were dropped into the 
reservoir a t  different stations upstream of the slit. As the dye particles fell, they 
left distinct vertical traces. Photographs were taken a t  time intervals so that 
the horizontal motions of the dye lines were recorded intermittently. Portions 
of typical photographs are shown in figure 8 (plate 1). Approximately 10 min 
after the first set of dye particles were introduced, a second set was introduced 
in the same way and photographs taken as before. At the end of the experiments, 
the discharge valve was shut off and the remaining liquid in the reservoir saved. 



Journal of Fluid Mechanics, Vol. 24, p r t  3 Plate 1 

(4 (c) 

F~GURE 8. Typical time Iii,psc phot>ogrnphs of‘ tlyc: lincs (run 5-50-0 .5 ) .  ( a )  Dyc linc nt 
t.irne to.  ( b )  Dyr. lincs at. time to+ 55 S C C .  (v) Dye lincs a,t, t irriv t o +  110 S C C .  

KOH 
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After the dye had disappeared by diffusion (about 24 h) a density profile was 
taken again and another experiment could be performed with the remaining 
liquid a t  a different flow rate. For each filling of the reservoir, three experiments 
were performed. After that, the colour of the water became so blue from the dye 
that no further dye streaks could be readily distinguished. 

1.4 

1 -2 

I -0 

= 08 s. 
3 
8 o 6  

0.4 

0-2 

0 

0 
0 

c 
I I I I 

1.000 1.005 1.010 1.015 1 

Specific gravity 

FIGURE 7. Typical measured density profile. 

20 

For the T-series runs, the reservoir was filled with layers of water at appropri- 
ately varying temperatures. A temperature profile was then measured with 
a thermomemter and the experiment was performed immediately in the same 
way as for the N-series runs. In  the T-series, only one experiment was performed 
for each filling of the reservoir. 

The discharge was measured volumetrically for both series. Velocity profiles 
were measured from displacements of the vertical dye lines on photographs taken 
at  different times (figure 8, plate 1). The photographs were superposedin the dark- 
room and the dye lines traced, from which displacements can be easily measured. 

A summary of the experimental parameters is presented in table 1. 

2.2. Measurement and calculation of data from velocity profiles 
Besides the basic measured quantities listed in table 1 and the velocity profiles 
discussed in the next section, the following parameters were measured from 
selected dye traces (refer to figure 9): 

(i) z(cm), the distance of the dye traces from the sink. 
(ii) u,,,(z) (cmisec), the maximum horizontal velocity on a vertical profile at 

distance x. This is found to be always along the level of the sink. 
(iii) y,(x) (cm), half the thickness of the withdrawal layer as measured by the 

intersection of the dye images. This measurement is not very accurate since it is 
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strongly influenced by any mis-alignment in the process of superposition of the 
dye images. 

(iv) ql (x)  (cm2/sec), the forward-flowing unit discharge as measured by the 
area enclosed by the dye images. Throughout the calculations leading to the 
experimental results the measured local unit forward discharge qf has been used 

Run 
N-8-1.7 
N-8-3.5 
N-8-11.7 
N-12-0-15 
N-12-0.3 
N-12-0.9 
N-12-2.3 
N- 12-4.4 
N-12-10 
N-25-0.04 
A'-25-0.2 
N-25-0.5 
N-25-1.5 
N-25-5 
N-25-9 
N-50-0.13 
N-50-0-5 
N-50-1 
N-50-3 
N-50-6 
N-50-11.7 
T- 16-0.6 
T- 18-2.0 
T-2 1-2.4 
T-10-5 

Density 
gradient, 
- 1 Cls, 

Po dY 
E =- - 
( em-1) 

7.35 
6.76 
6.76 

12.8 
12.8 
12.8 
14.4 
14.4 
14.4 
29.5 
26.0 
28.9 
26.2 
25.6 
25.9 
59.7 
59.7 
59.7 
57.0 
67.4 
63.0 
16.4 
18.2 
20.9 
9.5 

Unit 
discharge 
measured 
at outlet, 

P 
(cmz/sec) 

0.127 
0.271 
0.904 
0.0108 
0.0232 
0.0723 
0.179 
0.335 
0.760 
0.0032 
0.0153 
0.0392 
0.121 
0.412 
0.710 
0~0100 
0.0376 
0.0727 
0.245 
0'474 
0.896 
0.0485 
0.154 
0.188 
0.388 

Kinematic 
Diffusivity, viscosity, 

D V - 
1.25 900 
1.25 900 
1.25 900 
1.25 950 
1.25 950 
1.25 970 
1.25 950 
1.25 960 
1.25 960 
1.25 960 
1.25 960 
1.25 960 
1.25 9 60 
1.25 960 
1.25 960 
1.25 950 
1.25 950 
1.25 950 
1.25 960 
1.25 960 
1.25 960 

144-149 700-880 
144-149 690-890 

144-147 760-930 

(10-5 cIIiyscc) 

144-150 660-890 

Temp., 
T 

("C) 
25.0 
25.1 
25.1 
22.5 
22.5 
21.5 
22.5 
22.0 
22.0 
22.0 
2 2 4  
22.0 
21.8 
22.0 
22.0 
23.0 
23.0 
22.5 
22.0 
22.0 
22.0 

26.0-37.0 
25.5-38.0 
25.5-40.0 
23.6-32.8 

TABLE 1. Summary of basic experimental parameters for each run 

Depth, 
d a0 

(cm) (cm-P) 

43.8 9.13 
43.4 9.0 
43.0 9.0 
41.3 10.0 
41.8 10.0 
41.0 10.0 
41-2 10.2 
40.6 10.2 
40.5 10.2 
41.4 11.5 
41.5 11.3 
41.6 11.5 
42.6 11.3 
43.7 11.2 
42.0 11.4 
41.3 13.0 
41.5 13.0 
40.8 13.0 
41.6 12.9 
39.7 13.2 
40.0 13.1 
39.7 4.91 
39.7 5.00 
39.7 5.15 
41.0 4.45 

instead of the average unit discharge q,  measured at the outlet. The finiteness of 
the tank in length and width is the primary reason for this choice. Thus q was 
never used in the calculation of any experimental result. 

To facilitate comparison between the experimental result and the analytical 
solution, the same change of q to qr may be accomplishedin the analytical solution. 
From the numerical analysis it has been found that (see also figure 4) 

f0(3*57) 0-531 

theory f o ( % )  0.500 

2.3. Similarity in the velocity proJiles 

A number of velocity profiles were measured for each experiment. These velocity 
profiles were for various distances upstream, i.e. various values of x. From the 
experimental observations, it  was noted that there was similarity among these 
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velocity profiles; in other words, when the velocity profiles were plotted in the 
form u/urn,, against y,/jjo, the curves were the same for all the runs and all the 
values of 2 except those very near the sink. Here u,,, is the maximum velocity 
which was found to be always a t  the level of the sink and go is defined to be 

--x+ 

/ I  Yo 

of sink 

FIGURE 9. Definition sketch. 

where qt is the forward-flowing unit discharge; and the factor 0-955 is used to 
facilitate comparison with theory. In plotting the data this way, all the velocity 
profiles pass through the point u/urn,, = 1 at y/Y, = 0. Also, in defining ijo by 
equation (2.2), the area under the curve from y = 0 to the point where u/urn,, 
crosses the y/g0 axis is forced to be constant, since 

The purpose of the dimensionless velocity graphs in figure 10 chosen as a 
representative group from the 25 available is to demonstrate the similarity in 
the shape of the velocity profiles for the various experiments. Approximately 
three to five profiles were selected at random from each experiment and plotted 
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in this way. This similarity in the velocity profiles is one of the most significant 
results of the experiments. 

Although strictly speaking the analytical solution for the velocity distribution 
should not be applied to the majority of the experiments, it may nevertheless be 
represented in the form u/u,,, against y/go. In  fact the number 0.955 in the 
definition of yo in equation (2.2) was so chosen that the analytical solution 
represented in that same way, would pass through the point u/u,,, = 0 at 
yiyo = 1. As a comparison, the analytical solution has been drawn in figure 10 

Run N-25-5 
o x=53cm 

8 lcm 
A lOOcm 

1.0 

l.O[ 01 

I 

Run T-10-5 
x =  14cm 

26cm i * 91cm 

Run N-50-3 
x=90cm 

142cm 

1.0 

Y h  

- 1.0 

FIGURE 10. Velocity profiles for various runs. 

as solid lines. It is readily seen that as far as the shape of the velocity profiles is 
concerned, the experimental results fit the shape of the analytical profile 
extremely well even though the experiments were not all carried out for the 
values of €6, S/x, q/Dol,z%, and qiva,x* small compared to 1 as required by the 
theory. 

From these graphs it may therefore be concluded that the shape of the velocity 
profiles u(y ) ,  obtained from the experiments, is the same as that predicted by the 
analysis presented in 8 1. 

2.4. An extension of the zeroth-order solution 
In  $2.3 (equation (2.2)), go was defined to be a length by which the vertical 
co-ordinate y was normalized so that the area under the curve would be constant. 
But there is another way that this length go may be interpreted which will have 
direct bearing on the conclusions which will be drawn from these experiments 
later. 
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In  the zeroth-order solution obtained in $ 1, the principal result is 

where, as defined before, a, = (eg/Dv)&. The functionf,([) is illustrated graphic- 
ally in $ 1  (figure 4). f;1(<) is symmetrical about [ = 0 and hence 

a0 4 
U,,, = wf;(O) = - 0.284 -, 

X f  X f  

where the number - 0-284 is the value of f;1(0) as obtained in $ 1. In  terms of qf 
(as defined by equation (2.1)), equation (2.4) may be rewritten 

u,,, = - 0*267~t,qf/xf. (2.5) 

Now in equation (2.5), the only quantity which is not kinematic is a,. The kine- 
matic quantities urnax, qt, and x may very simply be measured in the dye traces. 
Let one postulate that in cases when q/Da,x$ is no longer small, the same zeroth- 
order solution may be applied provided one replaces a, with a variable parameter 
a. Hence define x = a/cto where a is the value obtained from the experimental 

There is, however, another way of obtaining x, this time based on yo, which is 
half the thickness of the withdrawal layer as measured from the dye lines. From 
the analytical solution in figure 4, forf;l(a,yo/xf) = 0, we find that 

a, yo/xf = 3.57. (2.7) 

Now yo and x may be measured and another x may be computed by the formula 

It turns out that x = x‘ and yo = 3, within experimental error. Thus, the zeroth- 
order solution may be applied in all the cases obtained in the experiments 
provided one uses the appropriate value of a. 

2.5. The experimental parameter x = a/ao 

As explained in the previous sections, and as may be seen in figure 10, the 
zeroth-order solution obtained in 9 1 is remarkably accurate provided the value 
of a, is replaced by a, even though q/Da,x% and q/vct,x% are no longer small. It 
is therefore of the utmost importance to investigate how the value x = ./ao is 
related to the other physical parameters since once x is known, the flow field is 
known. From dimensional analysis one expects 

Since eS and S/x are indeed quite small as assumed in the theoretical solution, one 
expects the dependence of x on them to be small. Of course, when all these four 
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parameters are small, one expects x to be unity. The value x as computed using 
the equation (2.6) was plotted against the variable yf/Da,x8. For each of the 
experiments separately they are as shown in figures 11 and 12, where a repre- 
sentative group are given. A straight line is drawn through each group of points 
and these lines are compiled in figure 13. The points representing the T-series 
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FIGURE 11. Variation of x = u/uo with qt/(Duoz*) for the N-25-series runs. 

runs are slightly displaced from those of the N-series runs. This is because the 
quantity Dlv was 1.25 x for the N-series runs and 0.160 for the T-series runs. 
However, this displacement is not very large and is in fact within the experi- 
mental scatter. The experimental scatter may be attributed to several causes 
which will be described and discussed in the next section. 

2.6. Summary of experimental error8 

The apparatus was constructed to simulate the case of steady linearly stratified, 
two-dimensional flow into a hydrodynamic sink. Because of the finite width of 
the tank, the flow was not two-dimensional. Because of the finite length, the 
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flow was not steady and the discharge not constant with respect to x. All these 
effects were investigated with regard to the amount of systematic error they 
produce. Since the locally measured forward-flowing discharge qr is used in all 
the computations of the experimental results instead of the discharge measured 
a t  the outlet q, it  is believed that these errors do not amount to more than 10 %. 

1 

1.5 
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I I I I I I I l l  , & I I I t *  
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I I I I I , I ,  I , I I I 1 1 I l  I I I I I l l  

c I I 

,I i . $ 1  
8 

q,/(Dcl,xQ) 

FIGURE 13. Variation of x = a/% with qt/(Da,x3). 

The most significant errors should be in x-dependent results since most of the 
error-producing items such as the length effect are x-dependent. Besides these 
systematic errors, there are, of course, random errors. A few of the more 
important ones will now be discussed. 

I n  the measurements of the velocities by means of the dye traces the steps 
involved included the tracing of images from the negatives on to the paper. In 
so doing, the various images must first be aligned with the aid of various reference 
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crosses on the front side of the tank. Then the scale of the photograph had to be 
established by matching the scale in the photograph on the front side of the tank 
with a scale in the darkroom. Moreover, the distance in from the wall to various 
dye streaks was slightly variable making slight errors in the photographically 
measured lengths. It is believed that these errors, together with the systematic 
errors discussed earlier, are the cause of the scatter shown in figures 11 and 12 
(roughly 15 %). 

2.7. Conclusion 

Theoretical studies of incompressible, steady, viscous flow towards a sink in 
a stably stratified fluid were made. Both the two-dimensional and the axisym- 
metric cases were treated. Experiments on the two-dimensional case were also 
performed. The major conclusions can be summarized as follows: 

(1)  The limiting solutions applicable for very small discharge were obtained 
analytically by first making a boundary-layer-type assumption and then a 
perturbation based on the parameters q/Da,x% or Q/2nDa0x~.  They are similarity- 
type solutions, based on the similarity variable 

5 = aoy/x+ or a,x/r+. 

These solutions are presented in 9 1. 
(2) According to these solutions, the thickness of the withdrawal layer grows 

with distance x (or r )  upstream like x* (or d) and is inversely proportional to the 
parameter a, = (sg/Dv)*; tht: equations for 6 are for the two-dimensional case, 
6 = 7.14x+/a0 and for the axisymmetric case 6 = 5.8r*/a0. 

(3) Also, according to these solutions, the velocity field for the two- 
dimensional case is given by 

where ,fA(C) is shown graphically in figure 4 (a) .  For y = 0, 

For the axisymmetric case, 

where thisfh(<) is shown graphically in figure 5 (a).  For z = 0, 

u = u,,, = - 0.35aOQ/2nr*. 

(4) Twenty-five experiments were carried out to simulate the two-dimensional 
case where the range of variation of the parameter qJDa,xQ was 10-1 to lo3. 
It was found that within the region of applicability of the analytical solution 
(qf/Dsc,x% < 1 in the experiments), the experimentally determined velocity 
profiles agree within 10 94 with the analytical. 

(5) However, outside the range of direct applicability of the analytical 
solution, (1 < qf/Da,x* < lo3 in the experiments), experimental observations 
show that the shape of the velocity profile is still the same as predicted. By 
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varying a. to a by means of an experimentally determined coefficient x = a/a,, 
these experimental results may also be made to fit the equations of the analytical 
solution. The coefficient was found to be a function of pj/Daox* as given in 
figure 13. No experiments have as yet been done on the axisymmetric case. 

(6) For all the experiments, the local velocity profiles are similar in the sense 

(7 )  For all the experiments, the formula for S(x) is 
that U I ~ L n B X  = f (Yll0) .  

S(X) = 7*14d/a, 
where a@) = xao (figure 13). 
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